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Abstract. This paper presents a technique for representing and displaying high
dynamic-range texture maps (HDRTMs) using current graphics hardware. Dy-
namic range in real-world environments often far exceeds the range representable
in 8-bit per-channel texture maps. The increased realism afforded by a high-
dynamic range representation provides improved fidelity and expressiveness for
interactive visualization of image-based models. Our technique allows for real-
time rendering of scenes with arbitrary dynamic range, limited only by available
texture memory.
In our technique, high-dynamic range textures are decomposed into sets of 8-
bit textures. These 8-bit textures are dynamically reassembled by the graphics
hardware’s programmable multitexturing system or using multipass techniques
and framebuffer image processing. These operations allow the exposure level of
the texture to be adjusted continuously and arbitrarily at the time of rendering,
correctly accounting for the gamma curve and dynamic range restrictions of the
display device. Further, for any given exposure only two 8-bit textures must be
resident in texture memory simultaneously.
We present implementation details of this technique on various 3D graphics hard-
ware architectures. We demonstrate several applications, including high-dynamic
range panoramic viewing with simulated auto-exposure, real-time radiance envi-
ronment mapping, and simulated Fresnel reflection.

1 Introduction

Real-world scenes usually exhibit a range of brightness levels greatly exceeding what
can be accurately represented with 8-bit per-channel images. This is typical in outdoor
scenes where some surfaces are in sunlight and others are in shadow, in environments
with both interior and exterior areas, or in unevenly illuminated interior environments.
Previous work has described techniques for acquiring high-dynamic range (HDR) im-
ages of real world scenes, and for representing such images efficiently. Other work has
described techniques for visualizing high-dynamic range images by compressing the
dynamic range into the 8 bits of dynamic range that most display systems will accept.

We propose a technique for visualizing HDR image-based scenes in graphics hard-
ware without compressing the dynamic range. Borrowing from real imaging devices,
we add an “exposure level” parameter to the virtual camera model. The exposure level
can be dynamically adjusted to map a particular section of the full dynamic range of
the scene to the displayable dynamic range of the output device. Our technique is
similar in motivation to the dynamic visual adaptation work recently presented by Pat-
tanaik et al. [22], but focuses on how such visual adaptation can be accomplished in
real time using current graphics hardware. Central to our technique is the use of high-



dynamic range texture maps (HDRTMs) for real-time rendering of HDR image-based
environments. Our implementations of HDRTMs use standard 8-bit per-channel texture
memory to store 8-bit sections of arbitrary bit-depth textures.

In image-based rendering, texture maps often store the exitant radiance from a sur-
face rather than albedo. Since light can be arbitrarily intense, standard clamped 8-bit
textures have limited usefulness for image-based rendering. HDRTMs, on the other
hand, allow us to store arbitrarily large radiance values in texture maps. During ren-
dering, these radiance values are scaled according to the camera’s exposure level and
any light attenuation due to reflection or transmission, and then clamped to the valid
range of the display device. Thus HDRTMs are an appropriate technique for visual-
izing global illumination solutions interactively and properly simulating bright lights
reflected in dark surfaces.

Most devices display images with 8 bits per-channel, employing a nonlinear map-
ping between pixel values and brightness levels. This mapping is typically described by
a gamma curve, in which the intensity i displayed on the monitor for a pixel with value
p is computed as i = (p=255)γ. In this work, we create texture maps that have a greater
number of bits per pixel than the display device, allowing for increased dynamic range.
For example, a texture map with 16 bits per pixel allows us to represent 256 times the
displayable pixel value range, and with a γ= 2:2 mapping 1 the maximum representable
intensity increases by 2562:2, or nearly a factor of 200,000. This dynamic range is
enough to represent bright outdoor scenes and darker indoor regions in the same texture
map, and is therefore adequate for most applications.

2 Related work

An early source of high-dynamic range (HDR) images in computer graphics were the
renderings produced by radiosity and global illumination algorithms. As a particular
example, Greg Ward’s RADIANCE synthetic imaging system [32] outputs each of its
renderings in Ward’s “Real Pixels” [31] high-dynamic range Red-Green-Blue-Exponent
format, representing HDR images in just 32 bits per pixel. Schlick [27] later presented
a nonlinear mapping process to encode color HDR in 24 bits per pixel, and Ward has
presented two other formats based on separating high-dynamic range luminance from
perceptually represented chrominance as the LogLuv extension to the TIFF image for-
mat [15]. HDR images of real-world radiance may also be acquired using standard
digital cameras as demonstrated in [4]. We use HDR images acquired with this tech-
nique in this paper.

Displaying HDR images on low-dynamic range (LDR) devices such as video mon-
itors and has been studied in the context of tone reproduction [29]. [10] performed this
process through quantization, [16] through histogram adjustment, and [30] through a
form of anisotropic diffusion. [21] modeled the effect of visual adaptation in viewing
high-dynamic range images, and later work [22] modeled global time-dependent ef-
fects. [30] discussed a foveal display program in which the exposure of a high-dynamic
range image was adjusted according to user mouse input, but was implemented in soft-
ware only. [26] presented a technique for performing Ward’s tone reproduction algo-
rithm interactively to visualize radiosity solutions.

Texture mapping has been used in scan line renderers, ray tracers, and hardware-
accelerated computer graphics applications for over two decades. A survey of applica-
tions of texture mapping is presented by Haeberli and Segal in [11]. We take advantage
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of the powerful new additions to the texturing pipeline that allow for programmable
texture preprocessing such as NVidia’s register combiner and texture shader architec-
tures [19].

Of particular relevance to our work is the use of texture mapping for real-time
image-based rendering [5, 7, 17, 24]. Most applications of these techniques have been
limited to reproducing scenes with low-dynamic range, such as flatly illuminated room
interiors or cloudy outdoor environments. This paper provides a way to extend these
techniques to environments with dramatic lighting, such as both interior and exterior
areas, by allowing high-dynamic range images to be used as texture maps.

[3] used high-dynamic range images of incident illumination to render synthetic
objects into real-world scenes. This work used non-interactive global illumination ren-
dering to perform the lighting calculations. Significant work has been done to approx-
imate these full lighting calculations in real-time using graphics hardware. For exam-
ple, [1] and [12] described how texture prefiltering and standard texture mapping could
be used to interactively render convincing approximations to the illuminated objects
in [3], while [13, 14, 23] use multi-pass rendering methods to simulate arbitrary sur-
face reflectance properties. This paper presents a potential step towards extending these
techniques by allowing high-dynamic texture maps to be rendered with hardware accel-
eration and used for hardware-based lighting calculations. An alternate implementation
by Simon Green uses the new two-channel 16-bit HILO texture format available in the
NVidia GeForce3 architecture [8] to perform similar calculations.

3 Representation and rendering of HDRTMs

3.1 General technique

Most graphics hardware allows only 8-bit per-channel color values to be used in texture
maps.2 However, many graphics cards allow texels from multiple textures to be com-
bined during texture fetching or in the framebuffer to produce the final rendered color.
In our technique, we use multiple textures to represent high-dynamic range textures.
These textures are then combined in hardware to produce a correct 8-bit texture for any
exposure setting.

Consider a 16-bit texture that stores values directly proportional to the exitant ra-
diance from a surface. We simulate the appearance of the surface as seen by a linear-
response camera with a given exposure value and white point by computing:

I(v) = clamp(ev):

Here e is a virtual exposure level that may take on any non-negative value, and the
clamp function simply clamps the result to 8 bits, that is, to a pixel value of 255. To
provide for hardware computation of I(v), we can represent the 16-bit texture v as two
8-bit textures, storing the low bits into v0 and the high bits into v1. We then have

I(v) = clamp(e(v0 +256v1))

= clamp(ev0 +256ev1)

= clamp(clamp(ev0)+ clamp(256ev1)) (1)

where the last equality follows from the observation that for a;b � 0, clamp(a+ b) =
clamp(clamp(a)+ clamp(b)). This is demonstrated graphically in Figure 1.

2The newest GeForce3 cards from NVidia allow for a two-channel 16 bit per-channel format.



Original HDR texture

    High 8-bit texture    Low 8-bit texture

Addition yields HDR 
texture scaled by e, and 
clamped to 8-bits

    Scaled by e/256     Scaled by e

Fig. 1. Overview of HDRTM pipeline.

Many graphics systems have multitexturing that supports texture computations of
the form of Equation 1, although all systems we have investigated have required some
modifications to accommodate limitations such as restricted ranges for operands (e.g.
multiplication by values greater than 1 is not supported).

It should be noted that when e < 1=256, any regions that were clamped (saturated)
in the 16-bit texture will begin to dim incorrectly. Similarly, when e > 1, the low 8 bits
of the texture will be amplified and the displayed texture will begin to appear quantized
for lack of sufficient low-order bits. This means that restricting e to the range [256 �1;1]
allows the 16-bit texture to be viewed without visible artifacts.

For textures with greater than 16 bits, we can modify Equation 1 by adding one term
to the sum for each additional 8 bits. However, adding many textures together during
rendering may impact performance. By precomputing and storing additional texture
maps, we can compute Equation 1 by adding only two 8-bit textures together. We
illustrate this with an example. Consider a 24-bit texture value v. From v we compute
x = v=256, which is representable in 16 bits. We also compute y = clamp (216

�1)(v)
which clamps v to the 16-bit maximum. We split the 16-bit values x and y into 8-bit
textures x0, x1 and y0,y1 as above. For a given value of e, we compute I(v) as follows.
If e 2 [256�1;1], I(v) = clamp(clamp(ey0) + clamp(256ey1)), as in Equation 1. If
e 2 [256�2;256�1], I(v) = clamp(clamp(256ex0)+ clamp(2562ex1)). In general, the
number of textures required to store a texture of bit depth 8n with n� 2 is 2n�2. Note
that for an 8n-bit texture, the useful exposure range is [256 1�n;1].

3.2 Gamma-corrected textures

Most display devices apply a gamma curve to the output intensities as described in
Section 1. To produce the correct display values, we must therefore gamma correct an
HDRTM by exponentiating the radiance values by 1=γ.

Let v0 = v1=γ be a gamma-corrected texture value. To apply our technique to gamma-
corrected values, we need only observe that gamma-correcting the result of scaling
radiance value v by e is equivalent to scaling v 0 by e1=γ. If we let e0 = e1=γ, this implies



that
I(v)1=γ = clamp(v0e0) = clamp(clamp(e0v00)+ clamp(256e0v01): (2)

Thus, provided the values in the HDRTM are gamma-corrected before they are con-
verted to 8-bit textures, we can correctly render this HDRTM by gamma-correcting
the exposure level as well. Note that this extends the effective exposure range of the
texture map to [1=256γ;1]. The downside is that we can not correctly add two gamma-
corrected HDRTMs using the standard addition operator, for example to render diffuse
and specular passes as shown in Figure 3e.

3.3 Implementation on SGI

We can implement HDRTMs using the hardware-accelerated pixel transfer pipeline op-
erations on SGI systems. Assuming gamma-corrected 16-bit texture values, we first
render the high 8 bits of the texture into the framebuffer, v 0

1. We turn off blending, set
the pixel transfer function to scale all color channels by 256e 0, and call glCopyPixels to
read the framebuffer back onto itself and apply the scale factor. Next, we turn on ad-
ditive blending, set the current color to be (e 0;e0;e0), set the texture environment mode
to modulate the texture values by the current color, and render the least-significant por-
tion of the texture into the framebuffer, v 0

0. This directly computes the quantity as in
Equation 2. On an Onyx3 Infinite Reality, this runs in full screen mode (1280 x 1024
resolution) at 30 Hertz.

3.4 Implementation on NVidia GeForce2

We have also implemented HDRTMs using the programmable texture combiner sys-
tem in NVidia’s GeForce2 and TNT architectures. This is inherently difficult because
these architectures do not directly support multiplying textures by values greater than
one. Texture combiners process texture values after they have been fetched from mem-
ory before they are written into the framebuffer. The GeForce2 contains two texture
combiners, each of which can take 4 inputs (A;B;C;D) interpreted as 8-bit fixed point
numbers between 0 and 1 and generate the output A�B+C�D. The inputs to the com-
biners can be either the value 0, the value 1, the current texel color, a constant color, an
interpolated color, or the result of a previous texture combiner. Finally, the output of
the combiner can be multiplied by 1, 2, or 4, with the result clamped back to the 8-bit
range. The details of this operation may be found in [19, 25].

Within this architecture, we can compute clamp(ex0 + 16ex1)) for any value of e
between 0 and 1 as follows:

Exposure Range Combiner Name A B C D Final Multiplier
e 2 [ 1

2 ;1] TC0 x1 1 x1 1 x4
TC1 TC0 e x0 e=2 x2

e 2 [ 1
4 ; 1

2 ] TC0 x1 1 x1 1 x2
TC1 TC0 2e x0 e=2 x2

e 2 [ 1
8 ; 1

4 ] TC0 x1 1 x1 1 x1
TC1 TC0 4e x0 e=2 x2

e 2 [0; 1
8 ] TC0 x1 1 0 0 x1

TC1 TC0 8e x0 e=2 x2

We carefully set up the combiners so that if a value has been clamped at any point
in the pipeline, future computations will never multiply the resulting number by less
than 1=2. This correctly ensures that the final output of TC1 after the multiplication by
2 will be 255 if any previous computations clamped.



If the texture combiners performed calculations in 8-bits of precision, the x2 multi-
plier at the end of TC1 would result in the low bit of the output always being zero. In
the TNT2 and later architectures, however, all texture calculations are performed in 9
bits (although this is not guaranteed by the specifications), so we do not lose precision.

The ability to modulate a texture value by up to a factor of 16 implies that we can
store 8-bit sections of an n-bit texture with each successive 8-bit chunk shifted 4 bits
from the previous. Thus with two textures, we can store a 12-bit texture map. We
may chain these 12-bit sections to achieve higher bit depth as in Section 3.1. Since we
can only multiply by up to 16, however, this representation requires 4n� 4 textures to
represent an 8n-bit texture map. Again, only two textures are ever used simultaneously.

With this method, a 16-bit texture would usually require 4 textures; however, in this
particular case it is actually possible to use a trick to reduce the number of textures
required to only 3. We start with two 8-bit textures, x0 and x1, representing the least-
significant and most significant 8 bits of a 16-bit texture as in Equation 1. We then
precompute a third texture z = clamp(16 � clamp(x1)). Since we can scale a texture by
up to 16, we can obtain clamp(256x1) using clamp(16z). In the case that e > 1=16, we
replace x1 with z in the above texture combiner setup. If e � 1=16, we multiply e by
16, divide the scale factors in variables B and D in the TC1 stage by 16, and use x 1 as
described in the table. This is the technique we used to create the images in this paper.

4 Applications

4.1 Visualizing HDR scenery

We have implemented a high-dynamic range panoramic image viewer using hardware-
accelerated HDRTMs, similar to panoramic image viewers like Quicktime VR [2]. Our
viewer is implemented with hardware-accelerated cube-based environment mapping,
where we render a cube that surrounds the viewpoint with the panoramic texture appro-
priately mapped onto it. The user can change the viewpoint by rotating and zooming, as
in Quicktime VR. Our viewer has an extra degree of freedom, however, since the user
can additionally set the exposure level at which the panorama is rendered. The system
is demonstrated in Figure 2.

The exposure can be set either by a slider or with an “auto-exposure” mode. In
auto-exposure mode, the system samples pixels near the center of the visible portion of
the panorama. The system then adjusts the exposure level to correctly expose the image
for these pixel values, similar to [28, 22]. To keep the exposure from fluctuating in an
unpleasant manner, we do not adjust exposure directly, but model it as a high friction
spring system, where the rest state is set to the desired exposure. More sophisticated
models of adaptation as in [28, 22] could also be investigated.

4.2 Lighting

We can also use HDRTMs to correctly model sharp specular reflections of bright en-
vironments from dark objects. We demonstrate this with high-dynamic range environ-
ment mapping of a teapot and simulating Fresnel reflection from the polished surface
of a dark monolith.

Perfect specular reflection of convex objects can be simulated using graphics hard-
ware by environment mapping techniques [9, 11] or by changing the camera’s projec-
tion matrix according to the position of the reflector, as in [6] and [20]. While these
techniques correctly calculate the position at which reflected objects appear on the sur-



face of the reflector, [3] notes that the intensity of the reflected light will be incorrect
unless the reflected color is computed in full dynamic range before being clamped to
the range of the display device.

For a point s on a perfectly specular surface, the reflected imaging function I s(r)
calculates the value to render to the framebuffer given incident environment radiance
r along the ray that is reflected towards the camera about s. Assume s modulates in-
cident radiance by specular coefficient φ, where φ2 [0;1]. To display the result of the
reflection, we compute Is(v) = clamp(eφv). Thus we set our exposure level to e �φand
render the value v that is stored in a HDRTM. To account for a gamma curve we must
actually set the exposure level to be (eφ)1=γ and use the texture value v0. An example
using this technique for real-time environment mapping is shown for a dark polished
teapot in Figure 3a; the specular reflection produces an image of the environment 1=8 th

of the environment’s brightness. Figure 3b shows the same result using just standard
8-bit texture maps incorrectly clamped at the exposure level seen in the background
environment.

We can also simulate glossy materials with a two-pass technique shown in Figure 3e.
First, we render the object with a pre-convolved diffuse environment map. Then we
render the object with a darker specular environment map and add the results in the
framebuffer. Note that we cannot correctly add gamma-corrected pixel values in the
framebuffer, so the result is not physically correct, although it looks plausible. Figure 3f
shows the correct result, obtained by compositing the two passes in software.

Most real-world polished surfaces will behave as near-perfect mirrors (φ= 1) at
glancing angles, while dropping to as low as φ= 0:05 at angles normal to the surface
(the so-called “Fresnel effect”). Because the reflectivity can change by a factor of 20,
the environment map must have dynamic range of at least 20 times that of the display
device. Figures 3c-d show the wide dynamic range seen by rotating about a polished
black monolith in a bright environment. To model Fresnel effects on curved surfaces
efficiently, we would need a way of continuously varying the exposure level at which the
HDRTM is rendered over the surface. This may be possible using different hardware-
based techniques on newer archnitectures such as the GeForce3 [8].

5 Conclusion and Future Work

We have demonstrated that high-dynamic range texture maps can be stored and rendered
efficiently using current hardware texturing architectures by storing high and low bits
in different texture maps and recombining them during rendering. While native support
for high-dynamic range would be ideal, the relatively small memory and processor
overhead in our implementations on the SGI Onyx3 and NVidia GeForce2 systems
suggest that HDRTMs could be applied in real applications on current hardware.

While the applications to lighting and scene visualization demonstrated in this paper
are useful, we believe that much more work could be done in this area. We would like
to experiment with performing hardware lighting calculations in full dynamic range and
using these results to illuminate textured surfaces, which may be possible with the lat-
est geometry and lighting engine on NVidia’s GeForce3 cards [18]. Other applications
include high-dynamic range lightfields and image-based models, as well as interaction
techniques that exploit the ability to adjust exposure level. The addition of direct sup-
port for arbitrary multiplication of texture values in the texture fetching stage, and the
ability to correctly add gamma corrected values in the framebuffer and multitexturing
units would enable more physically realistic real-time lighting simulation. We leave
this as future work in the area of hardware design.
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Fig. 2. Screen snapshots from our high-dynamic range panorama viewer. The viewer implements
our HDRTM technique allowing these results to be rendered interactively at 50 Hertz at 640�480
pixels with 4x antialiasing. The exposure changes by a factor of 100 over these 5 images.

(a) (c) (e)

(b) (d) (f)
Fig. 3. (a) Environment mapping with a specular coefficient of φ= 0:125 using HDRTMs. (b)
Environment mapping with 8-bit per-channel texture maps. The attenuation due to reflection is
not displayed correctly. (c) and (d) Simulated Fresnel reflection on a monolith in two environ-
ments. For the faces seen at glancing angles, the monolith is a near-perfect mirror. For the faces
viewed more directly, the specular reflectance drops to just 5 percent, revealing the colors of the
bright light sources. (e) A colored glossy material is simulated by adding a diffuse environment
map to a specular environment map with φ= 0:08. Because the textures have been gamma-
corrected, the result of compositing in the framebuffer is incorrect. (f) The simulated correct
result.


