We propose a new head-mounted camera system based on stereo cell phone cameras. These cameras have the advantage of being extremely small, light-weight, and programmable. We provide step-by-step details on how to recreate this apparatus and also how to apply this data to multiple applications in facial tracking and reconstruction. Our system is based on the LG Thrill, a 3D enabled cell phone that provides two synchronized stereo cameras in a tiny 4.2 gram module. We use two phones for a total of four cameras. However we do not want to mount the entire phone at the end of the helmet arm. Instead we designed a custom umbilical cord that allows the camera module to function at a large distance from the phone itself.

Step by Step Breakdown

Here is how to remove the 3D stereo camera module from the LG thrill P925 smart phone and drive it outside the smart phone via an umbilical cable.

DISASSEMBLE PHONE

1. A brand new LG thrill P925 equipped with dual 5MP stereo camera.
2. Take off the back to expose the 3.7V lithium battery.
3. Remove the speaker module first. With the speaker removed, it is possible to unscrew the middle frame.
4. The camera is actually an independent unit connected by a ribbon cable to the motherboard. The dual-camera module is vertically embedded into the circuit board with FPC connector on the side. An LED flash is coming from the other side and being laid on top of the camera module.
5. Pull out the camera module from its bed. This requires some effort as the module is taped on its bottom and the outline fits the bed pretty tight.
6. The original ribbon connector is a 40-pin, 0.4mm-pitch connector, part number “G042-A05-112-3000” from Hirose. Unfortunately, it is very difficult to find mating connectors for this component. Instead we replace the connector with a more standard part available from Digikey. The new part numbers are “DF40C-40DP-0.4V(51)” and “DF40C-40DP-0.4V(52)” manufactured by Hirose.
7. Gently disconnect the FPC connector from the mother board and the camera module is completely separated.

BUILD THE UMBILICAL CORD

8. Cutting the connector and being laid on top of the camera module.
9. The dual-camera module is vertically embedded into the circuit board with FPC connector on the side. An LED flash is coming from the other side and being laid on top of the camera module.
10. Replacing the 40-pin, 0.4mm-pitch connector is not a trivial job. It requires some desoldering and soldering plus the recommended ChipQuick Removal Package “SM20” for components removing. Here is the photo of the LG thrill after the camera module connector has been removed from its mother board.
11. Soldering a new connector is considerably easier than removing. Here is the photo with the new installed connector.
12. We also replace the connector on the camera module. When both sides have been upgraded with the new connectors, a function test should be carried out. Simply plug in the camera module back into the new socket and turn on the cell phone. Make sure everything still works after the replacement procedure.

Calibration & Software

Many 3D computer vision algorithms require accurate camera calibration. We developed a new single-shot calibration process using a 6" cylinder covered with a 2cm grid of black and white squares (Figure 1). The cylinder’s checkerboard corners can be detected quickly and automatically. Unlike techniques that rely on planar or spherical [Beeler et al. 2010] calibration objects, a cylinder provides points at multiple depths and more closely approximates the shape of a human face.

In keeping with a "point and shoot" philosophy cell phones are typically designed to automate exposure, focus, color balance, and stereo convergence. We developed a custom camera application that uses the LG Real3D SDK to lock the convergence and Android SDK to set focus and color balance. In the future, lower level hardware control may be possible as with the Frankencamera SDK for Nokia phones [Adams et al. 2010].